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On the displacement of three-dimensional fluid
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The yield conditions for the displacement of three-dimensional fluid droplets adhering
to a plane solid boundary in pressure-driven flows are studied through a series of
numerical computations. The study considers low-Reynolds-number flows between
two parallel plates and includes interfacial forces with constant surface tension. A
comprehensive study is conducted, covering a wide range of viscosity ratio λ, capillary
number Ca, advancing and receding contact angles, θA and θR , and dimensionless
plate separation H/h (where H is the plate spacing and h is the unperturbed droplet
height). This study seeks the optimal shape of the contact line which yields the
maximum flow rate (or Ca) for which a droplet can adhere to the surface. The
critical shear rates are presented as functions Ca(λ,H/h, θA,∆θ) where ∆θ = θA − θR
is the contact angle hysteresis. The numerical solutions are based on an efficient,
three-dimensional Newton method for the determination of equilibrium free surfaces
and an optimization algorithm which is combined with the Newton iteration to
solve the nonlinear optimization problem. The critical shear rate is found to be
sensitive to viscosity ratio with qualitatively different results for viscous and inviscid
droplets. As the viscosity of a droplet increases, the critical flow rate decreases,
facilitating the displacement. This is consistent with our previous results for shear
flows (Dimitrakopoulos & Higdon 1997, 1998), which represent the limit of infinite
plate spacing. As the plate spacing is reduced, the critical flow rate increases until
a maximum value is reached. Further reduction in the plate spacing decreases the
critical flow rate. The effects of both viscosity ratio and plate separation are much more
pronounced for high contact angles. Inviscid droplets (or bubbles) show behaviour
dramatically different from that of viscous droplets. For these droplets, a significantly
higher flow rate is required for drop displacement, but this critical flow rate decreases
monotonically as the distance between the plates decreases. In the Appendix, we
clarify the necessary conditions for low-Reynolds-number flows past low viscosity
droplets or bubbles.

1. Introduction
In this paper, we study the yield conditions for the displacement of three-

dimensional fluid droplets adhering to a single wall in pressure-driven flows between
parallel plates at low Reynolds number. This problem serves as a prototype for similar
flows encountered in manufacturing processes in the coating industry, as well as for
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drop displacement problems relevant to enhanced oil recovery. Previous work in this
area has concentrated on the problem of drop displacement by viscous shear flows.
The fundamental issues associated with shear-induced displacement have been dis-
cussed in Dussan V. (1987) and in our own earlier work (Dimitrakopoulos & Higdon
1997, 1998, hereafter referred to as DH1 and DH2 respectively). In these papers, we
conducted an extensive numerical investigation of the drop displacement problem,
discussed scaling laws based on the underlying physics and showed how the scaling
analysis explained the qualitative trends observed in the numerical simulations. We
found excellent agreement with Dussan V.’s asymptotic theory, but showed that the
asymptotic results were of limited utility for quantitative predictions at finite values
of the advancing contact angle θA and contact angle hysteresis θA − θR . A detailed
discussion of these points and a review of other literature relevant to this problem
may be found in these earlier papers.

In more recent work, a number of researchers have considered variations on
the drop displacement problem. Yon & Pozrikidis (1999) studied the shear-induced
deformation of three-dimensional droplets adhering to solid substrates with fixed
contact lines. These authors extended an earlier effort by Li & Pozrikidis (1996) to
include the influence of the viscosity ratio λ and the effect of insoluble surfactants on
the droplet deformation. Schleizer & Bonnecaze (1999) studied the problem of droplet
displacement in both shear- and pressure-driven flows. They limited their study to
two-dimensional droplets analogous to DH1 and considered displacement criteria for
fixed contact points. Schleizer & Bonnecaze also studied the case of droplets sliding
smoothly over the solid surface and included the effects of surfactants on the droplet
deformation. Dimitrakopoulos & Higdon (1999) complemented earlier work on shear-
induced displacement by analysing drop displacement induced by gravitational forces
in a quiescent fluid.

In the present paper, we turn our attention to the displacement of three-dimensional
droplets from solid boundaries in pressure-driven flows. To date, there has been
no study which addresses the full three-dimensional formulation of this important
problem. To address this challenge, we employ a three-dimensional Newton method to
compute the equilibrium shape of the fluid interfaces, combined with an optimization
algorithm to determine the optimal contour for the contact line on the solid substrate.
This optimal contact line is defined as that contour which requires the greatest
hydrodynamic force to displace a droplet with given size and material properties. The
numerical methods have been well documented in our recent paper on shear-induced
displacement (DH2) and will not be discussed in detail in the present effort.

2. Mathematical formulation and numerical methods
We consider a three-dimensional droplet immersed in a low-Reynolds-number flow

between parallel plates positioned at z = 0 and z = H . The droplet is attached to the
lower plate as illustrated in figure 1. The droplet size is specified by its volume V0

or equivalently by the radius a of a spherical droplet of volume V0 = (4π/3)a3. The
droplet (fluid 1) has density ρ1 and viscosity λµ, while the surrounding fluid (denoted
as fluid 2) has density ρ2 and viscosity µ. The surface tension γ is assumed constant
and we neglect gravitational forces, considering fluids with the same density or very
small droplets. The undisturbed flow far from the droplet is a plane Poiseuille flow
u∞ = G (z−z2/H, 0, 0) where the constant G is the velocity gradient (dux/dz)z=0 at the
lower wall. The contact line forms a closed curve C in the (x, y)-plane which intersects
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Figure 1. Pressure-driven flow between two parallel plates past a fluid droplet
attached to the lower plate.

the x-axis at two points, with the upstream point and contact angle designated x1

and θ1, and the corresponding downstream ones x2 and θ2.
The capillary number Ca, representing the ratio of the viscous forces to interfacial

forces, is defined by

Ca =
µGa

γ
.

The governing equations in the infinite fluid are the Stokes equations together with
continuity

∇ · σ = −∇p+ µ∇2u = 0, (1)

∇ · u = 0, (2)

with similar expressions for the droplet, with the viscosity replaced by λµ. In the
Appendix of this paper, we present the necessary conditions for low-Reynolds-number
exterior and interior flows.

The boundary conditions on the solid walls and at infinity give

u = 0 on z = 0 and z = H, (3)

u→ u∞ as r →∞. (4)

At the interface, the boundary conditions on the velocity u and surface stress f are

u1 = u2, (5)

f2 − f1 = γ(∇ · n)n. (6)

Here the subscripts designate quantities evaluated in fluids 1 and 2 respectively. The
surface stress is defined as f = σ · n, and n is the unit normal which we choose to
point into fluid 2.

For equilibrium shapes, the velocity field must satisfy an additional constraint – the



330 P. Dimitrakopoulos and J. J. L. Higdon

kinematic condition at the interface

u1 · n = u2 · n = 0. (7)

Note that we define an equilibrium shape to be a stationary interface for which all
kinematic and dynamic boundary conditions are satisfied under conditions of steady
flow. This should not be confused with the concept of equilibrium surfaces under
quiescent conditions.

For droplets in contact with a solid boundary, additional conditions are required
to prescribe the interface shape in the vicinity of the contact line. For real surfaces
(i.e. rough and chemically inhomogeneous), it has been found that the static contact
angle exhibits a hysteresis effect where the contact line remains stationary for any
angle in the range

θR 6 θ 6 θA. (8)

The limits θA and θR are called the advancing and receding angles respectively. As
in DH2, we assume that the advancing and receding angles θA and θR are physical
constants and require that (8) hold for all angles along the contact line C . More
details and references concerning the phenomenon of contact angle hysteresis as well
as the boundary conditions along the contact line can be found in our earlier papers
(DH1, DH2).

The relevant parameters in this problem include those of the problem of droplet
displacement in viscous shear flows (DH2); namely, the capillary number Ca, the
viscosity ratio λ, the advancing contact angle θA and the receding contact angle θR or
equivalently the hysteresis θA − θR . An additional parameter in the current problem
is the plate separation non-dimensionalized as H/h, where h is the height of the
fluid droplet in the quiescent fluid. In the absence of gravity, the undisturbed droplet
takes the form of a spherical cap with a constant contact angle along a circular
contact line. The constant angle θ may take any value in the range θR 6 θ 6 θA;
however we assume that the procedure for establishing the initial state yields a
value θ = θA. (See the extensive discussion in DH2 on this issue.) The droplet
height h is given by h = R0 (1 − cos θA)/ sin θA, where R0 is the radius of the
undisturbed contact line and is related to the characteristic radius a via the relation
(4π/3)a3 = V = (π/3)R3

0(2− 3 cos θA + cos3 θA)/ sin3 θA.
The problem formulation given by equations (1)–(8) is analogous to that arising

for shear-induced displacement presented in DH2. The computational procedures are
similar and only a brief description will be given here.

The determination of the yield conditions for drop displacement may be formulated
as an optimization problem in the following form: for a given contact angle θA
and hysteresis θA − θR , find the configuration corresponding to the highest capillary
number Ca for which an equilibrium solution exists. An alternative, but equivalent,
problem may be stated: for a given contact angle θA and capillary number Ca, find
the configuration corresponding to the minimum θA − θR for which an equilibrium
solution exists. This latter form proves more convenient for numerical computations
and has been adopted in our work; however, the results may be viewed in either
context with equal validity.

The solution to the optimization problem gives the critical condition for drop
displacement in terms of the maximum capillary number Ca or minimum contact
angle hysteresis θA − θR . Unfortunately, the optimal configuration and associated
yield condition may not be realized in an experiment. Depending upon the initial
configuration of the droplet, its initial deformation may lead to elongation in the flow
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Figure 2. Domain geometry for boundary integral solution for pressure-driven flow between two
parallel plates past a droplet attached to the lower plate.

direction, and it may be unable to access the optimal configuration. To determine the
critical yield conditions in such experiments, we reformulate the optimization problem
above with the additional constraint that the magnitude of the lateral positions y
cannot exceed the maximum value |ymax0 | in the initial configuration of the droplet.
This optimization will be called the y-constrained optimization problem while the
previous problem will be called the unconstrained optimization problem. More details
concerning the two optimization problems can be found in our earlier paper (DH2,
§§ 2.3 and 3.1).

The boundary integral formulation employed here is similar to that described in
DH2, § 2.1. The surfaces specifying the boundaries of the fluid domain are identified
in figure 2. With a formulation based on the disturbance velocity uD2 = u2 − u∞ the
integral on S∞ vanishes as its radius approaches infinity. While the radius of surfaces
Sα2 and S

β
2 extends to infinity in this case, a finite radius is employed in practice.

Extensive tests were conducted to evaluate the associated error with the radius of Sα2
and Sβ2 ranging from 3 to 40 times the radius r of the contact region. It is found that
a radius equal to 5r is sufficient to produce a change in the critical hysteresis angle
of less than 1%, while a radius of 10r yields a relative error of less than 10−3. Given
these results, a radius of 10r was chosen for all computations in this paper.

In the present paper, the majority of computations were performed with a dis-
cretization employing 33 elements. The drop surface Γ and the solid surfaces S1 and
Sα2 are discretized into 11, 5 and 8 elements respectively, as discussed in DH2 (see

their figure 3a, b). The upper wall Sβ2 is divided into 9 elements with a discretization
similar to that of the lower wall. For values of H/h < 1.1, an additional row of four
elements is inserted on the top wall above the droplet.

For the majority of the results presented in this paper, a spectral expansion with
NB = 7 points was used on each element. For certain cases with θA = 50◦, additional
points were used up to NB = 9. For θA = 30◦, the hysteresis θA − θR and the jump
in the distribution of the contact angles (see figure 3c below) are small; however,
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many points are required throughout the drop surface. In this case, the drop surface
was divided into five elements with NB = 10. Convergence for the spectral element
computations and for the optimization procedure was verified by increasing the
number of spectral points NB and determining the change in the computed hysteresis
θA − θR . In all cases, the results show a rapid decrease in the discretization error with
increasing number of basis points, similar to that presented in DH2, table 1 for the
problem of drop displacement in viscous shear flows.

The problem studied in this paper admits one level of symmetry about the plane
y = 0. Exploiting this symmetry reduces the memory requirements by a factor of 22,
the computational time for the system matrices by a factor of 2 and the solution time
for the linear systems by factor of 23. All the computations were performed on the
multiprocessor computers SGI Cray Origin 2000 and HP-Convex Exemplar SPP 2000,
provided by the National Center for Supercomputing Applications. Multiprocessor
runs exploit the parallel nature of calculating the system matrices resulting in a nearly
linear decrease in c.p.u. time.

3. Results
In the following subsections, we determine the optimal shape of the contact line

which gives the maximum flow rate (or Ca) for which a droplet can adhere to a
boundary wall in pressure-driven flows. We conduct a detailed study of the relevant
parameters, presenting results for the critical Ca as a function of hysteresis θA − θR
for several fixed values of the advancing contact angle θA, the viscosity ratio λ and the
plate separation H/h. While we consider the effect of all parameters on the problem,
we are most interested in the influence of the plate separation H/h on the critical
flow rate. As the plate separation approaches infinity, the pressure-driven flow near
the walls approaches a simple shear flow, and the computations reproduce the shear
flow results of DH2. In § 3.1 we study the yield conditions for drop displacement and
the influence of the plate separation H/h for viscous droplets. In § 3.2, we turn our
attention to inviscid droplets (λ = 0) while in § 3.3 we consider the effect of varying
the viscosity ratio while maintaining a fixed plate spacing H/h. In § 3.4, we make a
brief comparison with experiments.

3.1. Displacement of viscous droplets

We begin our investigation of drop displacement in pressure-driven flows by studying
viscous droplets with λ = 1 and θA = 90◦. Figure 3(a, b) shows the contact line
contours and the drop profiles (drop surface intersection with the plane y = 0) for the
unconstrained optimization problem for plate spacing H/h = 2 and for several values
of the capillary number Ca. In figure 3(b), the upper plate lies at z = 2, above the top
of the figure. (As implemented in this paper, the height of the quiescent droplet with
θA = 90◦ is h = 1.) Each successive curve corresponds to a higher Ca and a larger
contact angle hysteresis is required to hold the drop in place.

As the hydrodynamic forces on the droplet increase, the counterbalancing interfacial
force increases by reducing the contact angle on the front of the droplet. This brings
the interfacial force vector more nearly parallel to the plane and in opposition to
the hydrodynamic force. With a smaller angle, the droplet spreads over a larger
area to accommodate the fluid volume. Note that the width of the contact line in
the y-direction increases more than the extension in the x-direction. As explained in
DH2, the net interfacial force is proportional to θA − θR and the width of the contact
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Figure 3. Equilibrium shapes for droplets in pressure-driven flows with viscosity ratio λ = 1 and
advancing contact angle θA = 90◦, for H/h = 2 and for the unconstrained optimization problem.
For (a–c) the capillary number is Ca = 0, 0.04, 0.08, 0.115. (a) The optimal shape of the contact line.
(b) The cross-section of the drop surface with the plane y = 0. (c) The variation of the contact angle
θ as a function of the azimuthal angle φ. (d, e) The drop surface for capillary number Ca = 0.115.

line. The increased width and the reduced contact angle act together to increase the
interfacial force, yielding the wide asymmetrical profile illustrated in figure 3(a).

While we have focused on the shape of the contact line, the variation of the contact
angle around the contour also has an important effect on the force balance. Figure 3(c)
shows the contact angle θ along the contact line as a function of the azimuthal angle
φ measured with respect to the positive x-direction. In this figure, the downstream
portion of the contact line maintains a constant contact angle equal to the maximum
allowable value θA, while the upstream portion maintains a constant value equal to
the minimum angle θR . Between these two sections there is a rapid jump in the contact
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angle over the short segments φ ≈ 65◦–90◦ and φ ≈ 270◦–295◦. For fixed values of
λ, θA and Ca, the jump occurs at approximately the same φ location independent of
the plate spacing H/h. This is easily verified by comparing figure 3(c) with figure 4(c)
in DH2. The sharp jump in contact angle is a consequence of the droplet’s attempts
to maximize the interfacial force. The drop holds the minimum contact angle over
the entire front of the contact line, then makes the fastest possible transition to the
maximum angle on the rear-facing contour. A three-dimensional illustration of the
drop surface is shown in figure 3(d, e).

While the contours seen in the figures above represent the most stable contact
lines a droplet may achieve, they are not necessarily the contours which will be seen
in experiments. If a droplet is placed in a quiescent fluid with initial contact angle
θA and the fluid velocity is slowly increased, the rear of the droplet may yield first,
leading to extension in the flow direction. The optimal contact line contours may not
be accessible to the droplet in that particular experiment. As explained in DH2, § 3.1,
the actual yield stress is determined not only by the maximum possible yield stress,
but also by the initial configuration of the droplet, the conditions of the experiment
and the evolution of the contact line. To test the sensitivity of the yield stress under
these conditions, we consider the y-constrained optimization problem as described
in § 2. For this problem, we assume that the experimental conditions constrain the
contact line to displacements in the flow direction, and we require that the y-positions
do not exceed their maximum initial extension.

Figure 4(a, b) shows the contact line contours and the drop profiles for the y-
constrained optimization at several values of Ca for the same droplet and plate
spacing as above. As with the unconstrained optimization, for each successive curve, a
larger contact angle hysteresis is required to offset the increased flow rate. Figure 4(a)
shows that the downstream portion of the contact line is displaced much further
for the y constrained droplets compared to the unconstrained droplets at the same
capillary number.

Figure 4(c) shows the contact angle θ along the y-constrained contact line as a
function of the azimuthal angle φ. As before, the downstream portion of the contact
line maintains a constant angle θA, the upstream portion holds to a constant angle θR ,
and there is a rapid transition over the sections φ ≈ 60◦–120◦ and φ ≈ 240◦–300◦. The
broader width of the transition region for the y-constrained droplets is attributable to
the elongated shape of the contact line; that is, for drops with long sides parallel to
the flow direction, the net interfacial force is insensitive to the position and width of
the jump, because the interfacial force acts in a lateral direction on these sections. It
is of interest to note that the ovoid shape of the y-constrained contact line cannot be
approximated with an ellipse, because the contact angles on an ellipse change more
smoothly along the contact line. In addition, the minimum angle θR for an ellipse is
located not on the upstream portion of the contact line but somewhere between the
upstream and the downstream portions (see Li & Pozrikidis 1996, figure 12f).

Figure 4(d, e) shows three-dimensional views of a y-constrained drop for Ca = 0.10.
Comparison with the three-dimensional views of the optimal configuration in figure 3
shows the obvious differences for the two optimization problems. In comparing
the yield conditions for y-constrained and unconstrained droplets, we find that the
y-constrained contact line requires a slightly larger hysteresis θA − θR to hold its
position, i.e. it is slightly less stable than the optimal configuration.

Having explored the basic principles associated with the deformation and displace-
ment of the droplet, we turn our attention to the prediction of the yield conditions
as a function of the drop parameters. Figure 5 shows the critical Ca as a function of
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Figure 4. Equilibrium shapes for droplets in pressure-driven flows with viscosity ratio λ = 1 and
advancing contact angle θA = 90◦, for H/h = 2 and for the y-constrained optimization problem.
For (a–c) the capillary number is Ca = 0, 0.04, 0.08, 0.10. (a) The optimal shape of the contact line.
(b) The cross-section of the drop surface with the plane y = 0. (c) The variation of the contact angle
θ as a function of the azimuthal angle φ. (d, e) The drop surface for capillary number Ca = 0.10.

the contact angle hysteresis for the unconstrained and y-constrained optimal contact
lines. In this figure, we plot one additional curve, corresponding to the case of a
circular contact line. This last curve is determined as the solution of an optimization
problem for contact lines of circular shape but arbitrary radius (DH2, § 3.3). The
insets show the actual shape of the contact line contours and the droplet profiles for
the three different configurations at a typical value of Ca. For each point on a given
curve, we specify the capillary number and a fixed value of θA, and find the optimal
solution which minimizes the hysteresis θA − θR . The specified Ca then represents the
yield condition for that value of θA and θA − θR . The terminal points at the end of
each curve represent the largest θA − θR for which accurate numerical calculations
could be executed. The criteria for an accurate numerical solution include conver-
gence of the linear programming iteration and of the Newton iteration, consistency
with increasing order of NB and an error tolerance for the maximum u · n 6= 0 on
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Figure 5. Critical capillary number Ca versus hysteresis θA − θR for λ = 1, θA = 90◦, H/h = 2 and
for different optimal contact lines. Also shown are the shapes of the contact line as well as the drop
profiles for Ca = 0.10. Contact lines: ——, unconstrained; - - - -, y-constrained; – – – –, circular.

the interface. For all cases, the algorithm stops when the linear programming fails to
converge. On physical grounds, we expect that the true terminal point corresponds
to a value θA − θR → θA, for which θR → 0 and the interface becomes tangent to the
boundary wall at the upstream portion of the contact line. We emphasize that figure 5
gives accurate yield conditions for all parameter values shown. The only limitation is
that we are unable to provide precise predictions for extreme values of the hysteresis
θA − θR . The results shown in figure 5 demonstrate that the critical capillary number
Ca for the unconstrained optimization problem is consistently higher than for the
other two problems. As the contact angle θA decreases, the difference in Ca for the
unconstrained and the y-constrained problem becomes smaller and smaller. For all
angles θA studied, we found that the circular contact line admits a significantly smaller
capillary number. For a droplet free to move over a solid surface, these results show
that the assumption of a circular contact line predicts a measurably smaller yield
stress than would be achieved in practice.

We now turn our attention to the effect of the advancing contact angle θA on the
critical capillary number. For brevity, we show results for the unconstrained droplets
only; additional results may be found in Dimitrakopoulos (1998). Figure 6 shows the
yield conditions for droplets with different values of θA as a function of hysteresis.
This figure shows that, at the specified plate spacing H/h = 2, the influence of the
contact angle θA on the yield condition is similar to its effect in simple shear flows
(DH2, § 3.1). In particular, for a given hysteresis θA − θR , increasing the contact angle
θA from small values, increases the critical flow rate, up to θA ≈ 90◦. Above this value,
increasing the contact angle θA decreases the critical flow rate.

The explanation for the contact line dependence becomes clear when one considers
the three forces which act upon the droplet: viscous shear stress, pressure forces and
interfacial force. For viscous droplets with small advancing contact angle (θA � 1), the
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Figure 6. Critical capillary number Ca versus hysteresis θA − θR for viscosity ratio λ = 1, plate
separation H/h = 2, for the unconstrained optimization problem and for different advancing
angles θA.

shear stress scales as τ∞ ≡ µG independent of the internal viscosity. The corresponding
force is proportional to the surface area of the droplet and scales as τ∞r2, where r is
the radius of the contact region. In terms of the characteristic radius a based on drop

volume, this gives τ∞a2θ
−2/3
A .

The pressure forces on the droplet may be divided into two distinct components.
The first term arises from the undisturbed pressure gradient acting on the droplet.
The pressure gradient in the flow scales as τ∞H−1, and the pressure change ∆p
over the droplet scales as τ∞ `H−1, where ` is the length of the droplet in the flow
direction. The pressure force scales as ∆p times the frontal area of the drop yielding
τ∞ `H−1 (wh), where w is the width of the contact line and h the drop height under
quiescent conditions. In terms of the characteristic drop radius a, the pressure force
scales as τ∞H−1a3. For fixed values of the dimensionless spacing H/h, the plate spacing
relative to fixed drop size H/a and the associated pressure gradient will change with
the value of the advancing angle θA. Thus we may write the pressure force in the

alternative form τ∞a2 θ
−2/3
A (H/h)−1.

The second component of the pressure force arises from the disturbance of the
base flow owing to the presence of the droplet. The pressure change ∆p for this term

scales as τ∞ θA and the associated pressure force scales as τ∞ θA (wh) or τ∞a2 θ
4/3
A .

For a viscous droplet and for all plate spacings H/h, the second component of the
pressure force is much smaller than the viscous shear stress. On the other hand, the
pressure force associated with the undisturbed pressure gradient is small compared
to the shear stress for large plate spacing (H/h� 1). As the plate spacing decreases,
this pressure force increases and for H/h ∼ O(1) it scales as the viscous shear stress.

Thus for all viscous droplets, the net hydrodynamic force scales as τ∞a2θ
−2/3
A , which

is consistent with the scaling for shear flows found in DH2.
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Balancing the hydrodynamic force is the component of interfacial force in the plane
of the wall parallel to the flow direction. This force is proportional to the width of
the contact region and, for small hysteresis θA − θR , it scales as (cos θR − cos θA) γw.
For small contact angles and small hysteresis, this force takes the asymptotic form

(θA − θR)θAγr ∼ (θA − θR)γaθ
2/3
A . As θA increases, the hydrodynamic force decreases as

θ
−2/3
A , while the interfacial force increases as θ

2/3
A . Thus a higher shear rate is required

to dislodge the droplet when θA increases from small values, in agreement with our
results in figure 6. A balance of these two forces gives the scaling for the critical
capillary number

Caasym viscous ∼ θ
4/3
A (θA − θR). (9)

When the contact angle θA approaches 90◦, the interfacial force (cos θR − cos θA) γw
reaches its maximum value. Higher contact angles reduce the net interfacial force
leading to the reduction in critical flow rate seen in figure 6 above. A comparison
between the scaling predictions and the numerical results shows good agreement in the
relevant asymptotic limits (i.e. for θA − θR � θA � 1). This has been shown previously
in our study on shear flows (see DH2, figure 15) and similar agreement holds for
the pressure-driven flows considered here. For larger contact angles, the quantitative
agreement is rather poor; however the scaling analysis predicts the correct qualitative
behaviour in all cases.

Having considered the displacement of droplets for H/h = 2, we now turn our
attention to the effects of plate spacing H/h. As the plate separation H/h approaches
infinity, the pressure-driven flow near the walls approaches a simple shear flow, and
the results are consistent with the shear flow results in DH2. As an example, for a
droplet with λ = 1, θA = 90◦ at a given Ca, the critical hysteresis for pressure-driven
flow differs from the shear flow result by a relative change of less than 7× 10−3 for
H/h = 50, and less than 3× 10−3 for H/h = 100.

Figure 7(a) shows the critical Ca as a function of hysteresis θA − θR for several
values of H/h. This figure exhibits an interesting trend in the dependence of the
critical condition for a viscous droplet on plate spacing. For a given hysteresis θA − θR ,
the critical Ca increases as the plate spacing is reduced from ∞ until it reaches a
maximum around H/h = 2. This implies that a plate spacing of H/h = 2 has the
most stable droplets. Below this plate spacing, the critical Ca decreases, reaching a
limiting value as H/h → 1. The dependence of yield condition on plate spacing is
illustrated more clearly in figure 7(b), which shows the critical hysteresis as a function
of plate separation for a representative capillary number. The existence of a minimum
in this curve (and the corresponding maximum in Ca in figure 7a) may be understood
by considering the individual contributions to the hydrodynamic force. The pressure
force associated with the applied pressure gradient increases monotonically as H/h
decreases owing to the increasing pressure gradient (τ∞H−1). The force due to viscous
shear stress decreases as the plate spacing is reduced. At infinite spacing the stress
on the droplet is very close to τ∞, but as the top plate is brought closer, it shields
the drop surface and the shear stress is reduced. For viscous drops, the combination
of these trends yields a minimum in hydrodynamic force near H/h = 2. For inviscid
drops considered below, we shall see a monotonic dependence on plate spacing.

The influence of plate spacing on three-dimensional droplets is in contrast to
the results for two-dimensional droplets where a monotonic decrease in the yield
stress with H/h is found (see Schleizer & Bonnecaze 1999, their figure 6). For two-
dimensional droplets, the entire volume of fluid must flow through the narrow gap
above the droplet. Owing to this feature, both the pressure force and the shear stress



Displacement of fluid droplets in viscous pressure-driven flows 339

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0 10 20 30

θA–θR

Ca

40 50 60 70

10 Shear

80

5

H/h = 2

1.5

1.1

(a)

40

30

20
1 5 10 20

H/h

θA–θR

15

(b)

Figure 7. Influence of the plate separation H/h. (a) Critical capillary number Ca versus hysteresis
θA − θR for a droplet with λ = 1 and θA = 90◦, for the unconstrained optimization and for different
plate separations H/h. (b) Contact angle hysteresis θA − θR versus plate separation H/h for a droplet
with λ = 1 and θA = 90◦, for Ca = 0.07 and for the unconstrained optimization.

increase as the plate spacing is reduced. For three-dimensional droplets, the fluid
simply flows around the droplet and the flow over the droplet diminishes to negligible
levels.

To illustrate the influence of the plate separation on the drop shape, in figure 8(a)
we plot contact line contours for plate separations H/h = ∞, 10, 5, for a droplet with
representative capillary number Ca = 0.14. As the plate separation decreases from
H/h→∞ to H/h = 5, the drop deformation decreases, resulting in a smaller extension
in the y-direction as well as in the flow direction. For smaller plate separation,
figure 8(b) shows the contact line contours for a droplet with capillary number
Ca = 0.07 at H/h = 2 and 1.1. In this case, as the plate separation decreases the drop
deformation increases resulting in a larger extension in both the y-direction and the
flow direction.

With a basic understanding of the displacement process for viscous drops with
λ = 1, we turn to droplets with higher viscosity ratio λ. For the sake of brevity, we
restrict our attention to the influence of the plate separation H/h for high-viscosity
droplets. Figure 9 shows the critical Ca versus contact angle hysteresis for a droplet
with λ = 10 and θA = 90◦, for unconstrained optimization at several different plate
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Figure 9. Critical capillary number Ca versus hysteresis θA − θR for a droplet with λ = 10 and
θA = 90◦, for the unconstrained optimization and for different plate separations H/h.

separations. This figure shows that the effect of plate spacing here is similar to that
for λ = 1 droplets with a maximum in the critical flow rate near H/h = 2. The
influence of the plate spacing on drop shape is illustrated in figure 10 which shows
the contact line contours for plate separation H/h = ∞, 5, 1.5 at a capillary number
Ca = 0.10. In this figure, the deformation of a high-viscosity droplet exhibits a
stronger sensitivity to plate spacing than the λ = 1 droplet. The physical discussion
and scaling analysis presented earlier help to explain the distinct contours arising
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at different plate separation. For large plate separation, the increased width of the
droplet increases the interfacial force while the dominant shear force is insensitive
to width for a given contact area. In this case, the viscous drop can increase its
stability by spreading in the lateral direction. By contrast, when the position of the
upper plate approaches the drop height, lateral extension is less desirable, because
the pressure force and interfacial force are both proportional to the width of the
droplet. Therefore, when H/h → 1, the viscous droplet experiences smaller lateral
extension and greater flow elongation, as shown in figure 10. Additional results for
high-viscosity droplets may be found in Dimitrakopoulos (1998).

3.2. Displacement of inviscid droplets (λ = 0)

Continuing our discussion of viscosity effects, we examine the case of inviscid droplets
with λ = 0. Figure 11(a, b) shows the contact line contours and drop profiles for
unconstrained optimization of inviscid droplets with contact angle θA = 90◦ at plate
spacing H/h = 2. The distribution of contact angles around the drop contours is
shown in figure 11(c), while three-dimensional views of the droplet for a typical Ca
are shown in figure 11(d, e). The droplet behaviour illustrated in this figure is similar
to that observed for the viscous droplets, with a few notable changes. Comparing the
unconstrained contours for the cases λ = 0 and λ = 1, we see less deformation and
lateral extension for the inviscid droplet. For inviscid droplets, the net hydrodynamic
force is associated purely with pressure forces, and there is less to be gained from
increased droplet width. The lateral and flow extension is a consequence of the
reduction in the upstream contact angle and the need to preserve the total volume
of the droplet. Of course, at a given Ca, there is less overall deformation, because
the pressure force alone is smaller than the combined pressure and viscous forces
encountered previously for viscous droplets. The inviscid y-constrained droplets (not
shown) continue this trend with less overall extension in the flow direction than for
the equivalent viscous droplets. In addition, as for the viscous droplets, the critical
capillary number Ca for the y-constrained inviscid droplets is consistently smaller
than for the unconstrained droplets. These results are given in Dimitrakopoulos
(1998).
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Figure 11. Equilibrium shapes for inviscid droplets (λ = 0) in pressure-driven flows with advancing
contact angle θA = 90◦, for H/h = 2 and for the unconstrained optimization problem. For (a–c) the
capillary number is Ca = 0, 0.10, 0.20, 0.30, 0.35. (a) The optimal shape of the contact line. (b) The
cross-section of the drop surface with the plane y = 0. (c) The variation of the contact angle θ as a
function of the azimuthal angle φ. (d, e) The drop surface for capillary number Ca = 0.35.

Next, we examine the effect of the advancing contact angle θA on the critical capil-
lary number. We restrict our attention to the unconstrained problem, but consider two
different plate separations, H/h = 5 and H/h = 1.1, because these two configurations
show significantly different behaviour. Figure 12(a) shows the critical Ca for plate
spacing H/h = 5 with curves for several different contact angles θA. Here, the effect of
θA on the yield condition for inviscid droplets is dramatically different from that for
viscous droplets. For inviscid droplets and a given hysteresis θA − θR , increasing θA
decreases the critical shear rate. By contrast, for viscous droplets increasing θA from
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Figure 12. Critical capillary number Ca versus hysteresis θA − θR for viscosity ratio λ = 0, for
the unconstrained optimization problem and for different advancing angles θA. Plate separation:
(a) H/h = 5, (b) H/h = 1.1.

small values increases the critical shear rate. This difference in behaviour is much
more pronounced at small θA and large H/h. In our second plot, figure 12(b), we
show the dependence of yield condition on θA for a small plate separation H/h = 1.1.
In this figure, at small θA, the influence of the contact angle is reversed, with increases
in θA producing an increase in critical Ca.

This change in behaviour can be easily explained if one considers the individual
contributions to the hydrodynamic force. For an inviscid droplet, the viscous shear
stress is identically zero, while the pressure force is composed of two distinct compo-
nents. In our earlier discussion, we noted that the pressure force associated with the
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undisturbed pressure gradient scales as τ∞a2 θ
−2/3
A (H/h)−1, while the pressure force

arising from the disturbance of the base flow scales as τ∞a2 θ
4/3
A . These pressure forces

must be balanced by the interfacial force which scales as (θA − θR)γaθ
2/3
A .

For large plate spacing, the base pressure gradient is quite weak, and the dominant
pressure force is associated with the disturbance of the base flow. Balancing this
pressure force with the interfacial force yields the scaling for the critical Ca

Caasym inviscid ∼ θ
−2/3
A (θA − θR) for H/h� 1. (10)

This shows that the critical flow rate decreases with increasing θA as illustrated in
figure 12(a).

For small plate spacing, the dominant pressure force is associated with the base
pressure gradient. Balancing this force with the interfacial force yields the scaling

Caasym inviscid ∼ θ
4/3
A (θA − θR) for H/h ∼ 1. (11)
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Figure 14. The optimal shape of the contact line for droplets in pressure-driven flows for λ = 0,
θA = 90◦, for the unconstrained optimization problem and for different plate separations H/h. The
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Now the critical flow rate increases with increasing θA as illustrated in figure 12(b).
The behaviour in this figure is analogous to that observed earlier for viscous drops,
because the scaling for the gradient term in the pressure force, for small plate spacing,
is similar to that for the viscous shear stress. As in the viscous case, the decline in Ca
for θA above 90◦ arises because the interfacial force reaches its maximum at θA = 90◦.

Next, we examine the influence of plate spacing in detail for a single value of
θA = 90◦. For brevity, we present only the results for the unconstrained optimal
contact lines. Figure 13(a) shows the critical Ca as a function of hysteresis for four
different plate separations H/h, while figure 13(b) shows the critical hysteresis as
a function of plate spacing for a single Ca. These curves show that the effect of
plate separation H/h for inviscid drops is significantly different from that shown
earlier for viscous drops. The net hydrodynamic force on the inviscid droplet is
solely due to the pressure force, and it increases monotonically with reduced plate
spacing. The critical curves for the yield conditions in figure 13 show a corresponding
monotonic behaviour with easier displacement of the droplets as the plate separation
is reduced.

To illustrate the effect of the plate separation H/h on the shape of an inviscid
droplet, figure 14(a) shows the contact line contours for inviscid droplets for a
specified Ca at several plate separations H/h. For all contours, the droplets must
spread over the solid surface to accommodate the fixed fluid volume as the leading
contact angle is reduced. At large plate separation (solid line for H/h → ∞), the
inviscid droplets spread primarily in the flow direction with increasing elongation
for increasing Ca. In this regime, the base pressure gradient is negligible, and there
is no penalty for extension in the flow direction. For small plate separation, the
pressure gradient term is the dominant hydrodynamic force, and the droplets extend
in the lateral direction to avoid this large pressure force. The pressure force does
increase owing to the increased frontal area, but this is offset by the proportionate
increase in interfacial force. This behaviour is more pronounced at higher flow rates
as shown in figure 14(b). Additional discussion on plate spacing and inviscid droplets
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Figure 15. Critical capillary number Ca versus hysteresis θA − θR for θA = 90◦, H/h = 2 and for
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including the case of y-constrained optimization may be found in Dimitrakopoulos
(1998).

3.3. Influence of the viscosity ratio λ

In this section, we collect results from calculations for λ = 0, 1, 10 to highlight the
influence of viscosity ratio on drop displacement at a fixed plate spacing. In figure 15
we plot the critical Ca as a function of hysteresis θA − θR at plate separation H/h = 2
for the unconstrained optimization. The insets show the optimal contact lines and
drop profiles for the different droplets. For the large-contact-angle (θA = 90◦) droplets
considered here, the inviscid droplets as well as the high-viscosity droplets show a
significant departure from the λ = 1 results. Clearly the effects of the droplet viscosity
should not be discounted for fluids with λ > 1 or λ < 1, and projections based on
λ = 1 may give only qualitative predictions for inviscid or high-viscosity fluids. The
contact line contours shown in figure 15 nicely illustrate the fact that, as the droplet
viscosity increases, the unconstrained contact lines exhibit greater lateral extension.

To offer further insight into the combined effects of viscosity ratio and plate
separation, in figure 16 we plot the critical Ca for different λ at two extremes
H/h → ∞ and H/h = 1.1. We show only the results for unconstrained optimization
here. From these curves, we observe that the effect of viscosity ratio for H/h = 2 is
quite close to the result for infinite plate separation or simple shear flow. By contrast,
for very small plate separation H/h = 1.1, we see a noticeable difference with the
curves for λ = 0 more closely approaching those of the viscous droplets. This result is
to be anticipated based on the foregoing discussion of scaling behaviour in the limit
H/h→ 1.
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3.4. Comparison with experimental observations

We conclude our study of drop displacement in pressure-driven flows by offering a
qualitative comparison of our results with experimental observations. First, we note
that there appear to be no detailed experimental results available for droplet shapes
or yield conditions for drop displacement in pressure-driven flows. The majority of
experiments have focused on the displacement of droplets on inclined surfaces due
to the action of gravity. Given these circumstances, we attempted some informal
visualization studies for viscous displacement in a parallel plate geometry. These ex-
periments were of limited extent and addressed only the qualitative issues concerning
droplet shape. Figure 17(a) shows the deformed interface shape for an stationary air
bubble attached to a Plexiglas substrate immersed in a flowing glycerol solution. The
experimental procedure here matched that described for the y-constrained optimiza-
tion in DH2, § 3.1. To compare this experimental observation with our computational
results, in figure 17(b) we present the surface of an inviscid droplet (λ = 0) with
advancing angle θA = 90◦, for plate separation H/h = 2, for the stated optimization
problem and a representative capillary number. Our computational results match the
experiment in a number of key features including elongation in the flow direction,
asymmetry in the flow direction and in the indentation and inflection points on the
sides of the bubble.

The prediction of the yield stress for droplet displacement is probably the most
important issue addressed in this paper. Unfortunately, there are no experimental
results with which we may make direct comparison. The only available computational
predictions are our own results for drop displacement in viscous shear flows (DH2).
As noted above, we have shown that our present results for pressure-driven flows
smoothly approach the shear flow results as H/h → ∞. We note that those earlier
results showed excellent agreement with the theoretical predictions of Dussan V.
(1987) in the appropriate asymptotic limits.
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(a)
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Figure 17. Comparison with experimental results. (a) A stationary air bubble attached to a Plexiglas
substrate immersed in a flowing glycerol solution. (b) The surface of an inviscid droplet (λ = 0)
with advancing contact angle θA = 90◦, for plate spacing H/h = 2, capillary number Ca = 0.25 and
for the y-constrained optimization problem.

4. Conclusions
In this paper we have conducted an extensive study of the drop displacement

problem for three-dimensional droplets in pressure-driven flows. We summarize briefly
some of the more important conclusions.

(i) The contact line contours for real droplets show fore-and-aft asymmetry with
a distorted shape not well represented by simple circular/elliptical planforms. The
distorted profiles allow sharp jumps in contact angle which increases the ability of a
droplet to adhere to a surface. The y-constrained contact line contours predicted by
the simulations show good qualitative agreement with experimental observations.

(ii) The yield stress predicted by the unconstrained optimization provides an upper
bound on the yield condition for a droplet on a solid substrate. Alternative droplet
configurations resulting from the y-constrained optimization show only a small change
in the predicted yield stress compared to the unconstrained case. Computations based
on circular contact lines show a significant reduction in the predicted yield stress.

(iii) Viscosity ratio plays an important role for viscous droplets. As the viscosity
of a droplet increases, the critical flow rate decreases (i.e. the displacement becomes
easier). This is consistent with our previous results for shear flows, which represent
the limit of infinite plate spacing. As the plate spacing is reduced, the critical flow rate
increases until a maximum value is reached, whereupon further reduction decreases
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the critical flow rate. The effects of both viscosity ratio and plate separation are more
pronounced for high contact angles.

(iv) Inviscid droplets (or bubbles) show behaviour dramatically different from that
of viscous droplets. A significantly high flow rate is required for drop displacement,
but this critical flow rate decreases monotonically as the distance between the plates
decreases. The displacement of inviscid droplets is strongly affected by the change in
the character of the pressure force as the plate spacing is reduced.

This work was supported by the National Science Foundation. Panagiotis Dim-
itrakopoulos acknowledges the support of H. G. Drickamer fellowship from the
Department of Chemical Engineering at the University of Illinois. The computations
were performed on the multiprocessor computers SGI Cray Origin 2000 and HP-
Convex Exemplar SPP 2000 provided by the National Center for Supercomputing
Applications.

Appendix. Constraints on the exterior Reynolds number for λ� 1

In this Appendix, we consider the conditions required for validity of the Stokes
flow equations. For any value of the viscosity ratio λ, the conditions for low Reynolds
number in both the interior and exterior flows are

Re2 ≡ ρ2u2a

µ2

=
ρ2Ga

2

µ
� 1 (A 1)

and

Re1 ≡ ρ1u1a

µ1

=
ρ1Ga

2

λµ
= Re2

ρ1

ρ2

1

λ
� 1. (A 2)

For density ratio ρ1/ρ2 and viscosity ratio λ of O(1) or higher, these conditions are
both satisfied if Re2 � 1. Therefore, in this case, when the inducing outer flow is
Stokes, the resultant inner flow is Stokes as well.

For low viscosity ratio (λ� 1), the condition (A 2) requires

Re2

ρ1

ρ2

� λ� 1, (A 3)

which seems to impose a severe constraint on the exterior Reynolds number. The
main point of this Appendix is to show that it is sufficient for the two conditions
Re2 � 1 and λ � 1 to be satisfied independently, without any condition on the
relative magnitude.

For the case of gas bubbles in a liquid, because of the small density ratio ρ1/ρ2, the
condition (A 3) is easily satisfied without undue restriction on Re2. While the present
study has not formally included the effects of gravitational forces, the density difference
has no effect on the dynamics as long as the Bond number Bd = (ρ1 − ρ2)ga

2/γ is
small, as is usually the case for small droplets.

When the density ratio is of O(1), there are a number of interesting applications
where λ � 1, and the condition (A 3) is not satisfied. In these circumstances, we
find that our results for the λ = 0 droplets remain valid, independent of the interior
Reynolds number. The computations for λ = 0 require that the exterior Reynolds
number remains small, and also require the boundary conditions τ1 = 0 and ∆p1 = 0
at the fluid–fluid interface. More specifically, we require that the inner shear stress
τ1 and pressure change ∆p1 are small compared to exterior stresses which scale as
τ∞ = µG.
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For arbitrary interior Reynolds number, there are two contributions to these
stresses: inertial terms and viscous terms. Consider the case of finite contact angle
θA. The inertial terms scale as ρu2

1 ∼ ρu2
2, where u2 ∼ Ga. This contribution is always

small when the exterior Reynolds number is small, i.e.

∆p1

τ∞
∼ ρu2

2

µG
∼ Re2 � 1. (A 4)

The viscous terms scale as λµu1/` ∼ λµu2/` for some length scale `. When the
interior Reynolds number is small, the length scale is a and the ratio of interior
viscous forces to exterior viscous forces is just τ1/τ∞ ∼ λ � 1. When the interior
Reynolds number is large, interior interfacial boundary layers may develop, and the
length scale ` is dictated by the balance between viscous and inertial forces. If the
boundary layer thickness scales as ` ∼ (λµa/ρu1)

1/2, then the interior shear stress and
pressure changes scale as

τ1

τ∞
∼ λ1/2Re

1/2
2 � 1. (A 5)

The local boundary layer thickness will vary somewhat dependent upon the functional
form of u2(x); however, the basic scaling (A 5) remains the same. Furthermore, the
viscous terms cannot exceed the magnitude of the inertial forces and thus they are
bounded by the smaller of (A 4) or (A 5). The analysis above may be repeated for
asymptotically small contact angle θA, with both the velocity u1 and the length scale
` reduced by a factor θA. The final conclusion is the same.

In summary, the boundary conditions at the interface (τ1 = 0 and ∆p1 = 0) remain
valid for arbitrary interior Reynolds number Re1, as long as the individual constraints
Re2 � 1 and λ� 1 are satisfied.
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